Category

volume 02

Function shaped in beauty

By interviews, volume 02 No Comments

What is the future of the car industry? How does it relate to architecture? Kamil Łabanowicz, architect and car stylist, explains the newest trends in automotive design and its relation to current technologies and the built environment.

Kamil Łabanowicz is an architect and a lead exterior designer at Audi AG in Ingolstadt. He graduated in architecture at the Silesian University of Technology in Gliwice and at the Scuola Politecnica di Design in Milano with a master’s thesis project dedicated to Audi. He worked on, among others, Audi e-tron Concept and Audi e-tron Quattro Concept. His architectural background helped him to understand basic principles of composition, proportions, and the similarities between architecture and cars in their technical, financial, and formal aspects. www.audi.com www.edomi.pl

You are in a unique situation as an architect who designs cars and simultaneously a car designer who designs buildings! What are the main similarities and differences regarding the general search for ideas and inspirations in those disciplines?

My journey through architecture and automotive design has shown me how much those two disciplines have in common. Looking back in time, the main purpose of houses was to provide shelter from atmospheric factors. Thousands of years later, the main purpose of cars was transportation from point A to point B. But thanks to architects and car designers, buildings and cars got something more than just a function. They received a function shaped in beauty. That is why the general approach to the project can be very similar for an architect and for a car designer.

Obviously, the main difference is the fact that a building is executed as one unit in one particular place and a car can be produced in thousands of units and sold all over the world. But despite that, the approach to architecture and car design can be narrowed to four main criteria: proportions, aesthetics, user experience, and soul.

Proportions define our first perception of an object. In ancient times, architects were almost obsessed with finding the golden rules of proportions in ancient temples. Today, car designers spend most of their time finding the right balance between the volumes of the car. The right proportions are the foundation of every good design and the first step toward beauty. I believe that “beauty” has to be “felt” and not “described.” A beautiful car will be admired everywhere in the world regardless of the culture and context. Mostly, when the right balanced proportions meet well-crafted shapes, we subconsciously feel a connection to the object. It sticks in our minds, and we want to experience it. We want to enter an interesting building and be guided through its rooms, spaces, and corridors. We want to experience an interesting vehicle by sitting inside it, finding out how it makes you feel inside when you’re behind the wheel. This need for experience was born because the creators, architects, and car designers wanted to tell a story.

I try to start every project with those four main criteria.

How did your adventure with cars begin?

I think only my parents can answer this, because I started drawing cars very early, before I can remember. I always loved cars. Growing up in the 80s in Poland, I could see only four types of cars on the street. But somehow, even as a child, I knew that there was something more. I was drawing cars all the time, everywhere—mostly on the back pages of my notebooks, making my teachers very angry. I decided to study architecture when I was 16 because I considered architecture as my second passion, and at that time, the costs of studying transportation design abroad were way too high.

Years passed by, and my architecture studies were going great. But the spirit of car design was somehow always awake inside me and was visible in every building project I was doing. Even my master’s thesis was a car museum.

Finally, in 2005, after Poland joined the EU, I could consider studying transportation design abroad. During my studies at the Polytechnic School of Design in Milan, I dedicated my master’s thesis project to Audi. That gave me a chance for an internship at its headquarters at the Design Center in Ingolstadt and afterwards a job contract. Now, after 11 years at Audi Design, I still have a feeling that there is so much to learn and discover in that field.

‘Audi e-tron Quattro Concept’ is equipped with a battery with a capacity of 95 kWh, which allows it to go a distance of 500 km on a single charge. Picture credits: Audi AG

‘Audi e-tron Quattro Concept’: a sketch by Kamil Łabanowicz. The concept combines aerodynamic design and a high-tech electric drive system. Audi AG

What is the story behind EDOMI?

EDOMI is a story of a family. Some say that only we can create our success. In my case, hard work toward my dream of designing cars was always accompanied by great support from my parents, and I will be always grateful to them for that. They were the ones who showed me how to think outside of the box, and trust me, in the 80s and 90s in Poland, this was a very rare mindset. That’s why our connection is very strong, and that led us to EDOMI.

It was Christmas Eve in 2013 when, after all the food and unwrapping the presents, my parents started to talk about finding a new house. As it turned out, it was very hard to find anything attractive in the neighborhood. I sat down on the sofa with my laptop and started to sketch some house-looking shapes directly in Photoshop. My dad on my left side, my mom on the right, my sister behind me—we all suddenly started a brainstorm and discussion while I was shaping the building on the screen. After just half an hour, we had a ready sketch of a house. And the major shape has not changed.

The house was located on land we had owned for years, but we had never considered that place for a house.

My idea was to create a modern house that would “float” above the ground. A house on one level, without stairs. Practical, opened only on a few particular perspectives, and different. My parents are special—why should their house be any different?

The general idea of the building was created very fast. For me, it was a “comeback” to architecture after many years. When EDOMI construction started full steam in fall 2014, I was simultaneously working as a lead designer on the Audi e-tron Quattro Concept. EDOMI was looking great on the renderings, and our task was to make sure that it looked as great in reality. Most people called us crazy. So, my father solved all the technical issues and problems himself as an experienced engineer. We knew that the project was exceptional in many ways, and we are very glad that world-class experts shared our opinion. In April 2015, we were nominated for, and eventually won, an A’Design Award prize in Lago di Como[02].

Since the shape of the house was pretty unique, other people started to ask us if we would consider building that house again for someone else. That’s how we started to think about how we could multiply that sort of house, taking into consideration the challenging craftsmanship required by those unique shapes. And that is what we are currently working on.

What is EDOMI all about?

It’s about breaking those rules in residential architecture that, in our opinion, are too old. We decided to detach the house from the ground—with this solution, our house is still located much higher than any typical bungalow. This solution brings a feeling of freedom, prestige, and space.

We also decided to use our Core & Shell concept. This concept, in which we physically separated functionality and design, facilitates two main functions: freeform shaping of the exterior façade, unrestricted by interior design/installations, while achieving excellent thermal and acoustic core insulation through the use of high-tech renewable materials.

In other words, the “Core” of the building is a steel construction that is detached from the ground and lined from the inside by sandwich panel walls. This solution provides very high energy efficiency. The “Shell” is our façade, which is not directly mounted on the internal walls of the building’s “Core.” That solution creates a gap through which rain or snow falls freely to the ground—it means an innovative drainage system that is simply hidden between the core and the outer façade.

The façade has a unique and characteristic design with very logical surface treatment. The intersecting surfaces create, in very logical way, edges and main openings. The dynamic lines create a feeling of lightness. With its shapes, EDOMI is very iconic.

The definitions of a “home” and a “car” develop rapidly. It is perhaps especially noticeable in cars—which have developed from devices “for moving from A to B” into places “for living in” as well… considering their equipment in cutting-edge communication technologies and integration with the concept of a smart city.

That is true. Soon, some vehicles will be able to become temporary houses that can move.

For decades, technology, automobiles, and architecture developed separately. Then, we started to use smartphones, and everything became connected. That brought us to the point where the hard border between work and private life started to vanish. Vehicles will start to help us to organize not only our journeys but also our days. Most importantly, cars will bring us back something most precious—time. Driving a vehicle in heavy traffic is a waste of time. What if we can get that time back? Autonomous driving will allow us to focus on other things while the car brings us to our destinations. I see it as the biggest advantage of the upcoming technology.

As the stylist of cars, you are responsible for the way they are perceived in a variety of situations. What values do you incorporate into the visual expression of a car? How would you describe your designing style, and how has it developed over time?

As I mentioned before, I start by defining the overall proportions of the car. The contours of a vehicle define its character. The proportions between of the cabin, the hood, the bodyside—it all has an influence on how the car “sits” on the ground. In my opinion, as in the case of buildings, the car has to stand proudly and stably on the street. If we combine it with elegant and dynamic lines, we will get a confident yet light-looking vehicle. That character, in my opinion, gains trust in people’s eyes on a subconscious level.

As soon as the proportions of the vehicle are fixed, the next step is to define the main lines and features of the car. Finding a “design theme” is similar to looking for a characteristic theme in architecture or even a characteristic melody for a song. It has to be new, fresh, and logical. It takes days or even weeks to find the right design “theme” for the car. Once we apply the design theme to the car, we spend months placing everything in the right position.

The last step is to give the surfaces a human touch. We work with 1:1 scale models where we shape the car in clay. Together with a group of professional sculptors (modelers), we can control any shape with a lot of feeling. I think that over time, my design is getting more strict, sharp, and logical. It is something I don’t see myself, but I have heard it many times.

The design of the Audi e-tron Quattro is an important step in the journey toward emissions-free and autonomous driving. Can you tell us more about this particular design?

The Audi e-tron Quattro Concept harmoniously combines design with aerodynamics and an all-electric drive system. Its coupe-like silhouette with an extremely flat greenhouse that tapers strongly toward the rear lends it a very dynamic appearance. The front of the car is dominated by the octagonal grille, which is surrounded by elements that hold the headlamps with the advanced matrix laser technology. The bottom section houses a new, distinctive lighting signature comprising five lighting elements. Each of these combines an LED luminary with an extremely flat OLED element.

The four-wheel-drive system is visually emphasized by the design theme on the body side—the wheels are surrounded by muscles that are visually connected by a wave-shaped line. Above that, just under the side window, an elegant line goes from the front of the car to its back end. That stretches the car and keeps the theme tight. A crisp line between the wheels creates an interesting feature and visually brings the focus to the wheels.

This car is an example of the intensive development work in the wind tunnel. Wind noise is low in the car, and there is no engine noise in an electric car in any case. The fascination of electric driving unfolds in near total silence. Cameras replace the exterior mirrors—another contribution to the excellent aerodynamics and also a foretaste of the future of driving. The rear lights also comprise two sections. Each of the top zones features nine red OLED units for the tail light function, with three more below. Overall, all the lines, starting from the front, side, and back, are visually connected. That creates a very solid and logical design with a touch of romantic lines.

‘EDOMI’: a modular single-family housing unit based on the concept of ‘Core & Shell,’ which allows freeform shaping of the exterior façade without any restrictions caused by the design of the interior spaces and installations. The ‘EDOMI’ houses are based on the same spatial principles, with small variations in the façade or materials. Picture credits: Kamil Łabanowicz (EDOMI).

What are the main differences and similarities in your designs of models such as the Audi e-tron Concept and the Audi e-tron Quattro Concept?

The approach to the proportions was very different: The Audi e-tron Concept was an electric sports car, and the Audi e-tron Quattro Concept is an SUV. The Audi e-tron Concept was a very pure concept with an almost minimalistic approach. The design features were reduced to the minimum—no unnecessary air intakes, windows, or lines. The car’s pure form indicated that this is not a combustion engine vehicle.

The Audi e-tron Quattro Concept, on the other hand, received many more lines, which visually made the car sporty and dynamic.

The main similarity was the approach to the aerodynamics. Both were intensively developed in the wind tunnel. Together, we managed to create design features that combined engineering and design. The Audi e-tron Concept, for example, had a feature on the roof that could morph to ensure the batteries were cooled. Also, the side air-intakes were smoothly blended with the exterior when not needed. We also had our first approach with cameras replacing the exterior mirrors.

On the Audi e-tron Quattro Concept, at speeds from 80 km/h (49.7 mph), electrically actuated aerodynamic elements on the engine hood, the flanks, and at the rear end direct the flow of air as needed to improve the flow through and around the vehicle. All of those elements were integrated into the exterior design, being another proof that when the designer works closely with the engineers, together, they can achieve very efficient yet elegant solutions.

What scope of knowledge and skills are essential among the members of a design team responsible for concept cars?

As in any design-oriented field, the members of a design team have to be creative. But most of them have been since they were born. What comes in our job later are other skills like being patient, being able to adapt to unexpected changes, being a good seller and talker, being open-minded and open to criticism. Without those skills, it’s almost impossible to lead a project from the first sketch through the long design process until the start of production.

The cars that you are designing will be presented in a few years. What would you advise designers and innovators when it comes to anticipating the future?

I think keeping up with the latest technology is crucial. Nowadays, there are so many ways to follow the newest inventions around the world, so there is no excuse for not doing that. Inventions need good design as well, where attractive and intuitive forms meet great engineering.

Sketching on paper will always be the quickest way to put down our ideas, but we should not forget to learn the newest 3D software. Virtual reality is already giving us tools to shape our ideas in three-dimensional digital form in a way we have never experienced before.

Also, in the design process, a lot of ideas might be lost just because they don’t fit in that particular project. But maybe they can be used later. Therefore, it’s crucial to be organized and keep all your ideas in folders, in physical or digital form. Creating a personal “archive” can be very helpful, especially in moments when our creativity is low.

And finally, we creators should never ever lose one thing—optimism. Let it stay with us all the time!

Producing mutations — Prof. Carlo Ratti

By interviews, volume 02 No Comments

Laka: What is the city of your dreams like?

Carlo Ratti: I do not think that the ideal city exists. I would like to imagine it more like a collage of many cities. We could take inspiration from Georges Perec’s ideal home—split across all the arrondissements of Paris. So, I would say that my ideal city has the climate of Naples, the topography of Cape Town, the fusion cooking of Sydney, the architecture of Manhattan, the frenzy of Hong Kong and… why not? The exuberant nightlife of Rio de Janeiro!

Your practices implement a wide spectrum of various innovations, but they are always set in the specific social, natural, or built context, and they always respond to a specific need. What is the methodology behind the work of Carlo Ratti Associati and MIT Senseable City Lab?

In terms of focus and methodology, I would like to refer to what we call “futurecraft,” as we discuss in our latest book. This is something that is rooted in Herbert Simon’s definition of design, which he put forward in his classic ‘The Sciences of the Artificial’: “The natural sciences are concerned with how things are.… Design, on the other hand, is concerned with how things ought to be.” I like to see our work as something that contributes to the production of mutations, accelerating the transformation of the present into how it “ought to be.” I think design can be used as a systematic germination of possible futures, intervening at the interface between people, technologies, and the city.

Which emerging technologies of smart cities seem particularly interesting to you?

As you keep on using the word “smart city,” I would like to point out that I do not particularly like it. However, it is nothing else than the outcome of a broad technological phenomenon that has been unfolding over the last two decades and is now undergoing a dramatic acceleration. The Internet is entering physical space, becoming an Internet of Things (IoT)—and ushering in a series of unprecedented possibilities in terms of how we can understand, design, and live in a city. Applications are manifold: from mobility to energy, from water to waste.

For instance, let’s look at mobility. We know that mobility will radically change thanks to the advent of self-driving. Over the next decade, self-driving vehicles promise to have a dramatic impact on urban life. This is not mainly because you do not need to keep your hands on the steering wheel but because they will blur the distinction between private and public modes of transportation. “Your” car could give you a lift to work in the morning and then, rather than sitting idle in a parking lot, give a lift to someone else in your family—or, for that matter, to anyone else in your neighborhood or social-media community.

The advent of self-driving cars will change part of the urban infrastructure. Something that will probably change is parking. Today, our cars are parked on average a staggering 95% of the time. As a result, the parking infrastructure is so pervasive that for every car in the United States, there are approximately three non-residential spots—amounting to 5,000 square miles, an area larger than Puerto Rico. Autonomous cars can keep on being used in the system and hence could free up some of today’s parking areas.

‘Roboat’ is an autonomous on-demand infrastructure that can transform into bridges for pedestrians or be used as individual transportation through the city’s canal system. Photo (c) MIT and AMS Institute.

Prof. Carlo Ratti is a director of the MIT Senseable City Lab and a founding partner of the international design and innovation office Carlo Ratti Associati. Images © Carlo Ratti Associati.

Banner image (c) Carlo Ratti Associati. Paris Navigating Gym’: a project by Carlo Ratti Associati in collaboration with Technogym, Terreform One, and URBEM. It is a 20-meter-long boat that cruises along the Seine thanks to passengers’ workouts; Image “Roboat.org” (c) MIT and AMS Institute

This is an excerpt from the Laka Perspectives book vol. 02, published by Laka Foundation (non-profit, Poland) with the support of Solarlux GmbHwww.lakaperspectives.com. Follow Perspectives on Instagram: https://www.instagram.com/laka.perspectives/

Architecture is an expression of society — Amandus Samsøe Sattler

By interviews, volume 02 No Comments

(c) Allmann Sattler Wappner Architekten; photo by Brigida Gonzales

Amandus Samsøe Sattler is a German architect and a photographer with a wide range of art photography documents. In 1987, he cofounded (with Markus Allmann and Ludwig Wappner) the Munich-based architecture company Allmann Sattler Wappner Architekten. He lectures at the Academy of Fine Arts in Munich, the École Nationale Supérieure d’Architecture in Nancy, and the Institute of Architectural Design at the University of Applied Sciences in Cologne. His works focus on the future of urban planning and the coexistence of architecture and society. allmannsattlerwappner.de

Laka: The methods behind your office’s works are described as “context-aware design” and a “dialectical approach.” Can you elaborate more on those methodologies?

Amandus: Architecture is an expression of society. This is why we find it relevant to look at the context of society when designing architecture. Architecture has the possibility to support and influence societal processes. Context frames the task in a very literal way—the city, the investor, the inhabitant all have issues stemming from society—and we want to solve these issues with a strong design idea. We are a design-driven architectural company, and our ideas for design arise from the context and not from a form-driven idea of a certain design or shape. Context-aware design and a dialectical approach are the signature features of our project development process. The dialectical approach allows us to conceive the opposite during the design process—to question our expectations and formulate our conversations.

In the design of Deichmanske Library for Oslo, you proposed an approach which you compared to the structure of a tree—without a particular orientation, and “deeply rooted in the ground, nurtured vertically and branching out on the horizontal plane.” What constitutes a decision on the approach to the context in specific locations?

Exactly this decision—how we interpret the context with a design answer—is the reason one wins or loses a competition.… Do you meet the expectations of the people involved? Can you surprise them with another view? Your interpretation of the context has to attract interest and gain recognition. At our office, the decision is made by the design director involved in each project from the very beginning, and later also by consulting in the execution phase. A design decision is often constituted if the design is comprehensive. In the Oslo Library for instance, the idea was to show the social exchange and hierarchies of the inner structure in the façade.

What are the main organizational challenges when leading a design office with employees from such a number and variety of backgrounds?

It changes all the time. I have enjoyed the last couple of years, when we, the three founding partners, have found a good way to involve the newer generations in our company: sharing experiences and responsibility with younger colleagues—and also being open and allowing new ideas and approaches ourselves. One specific challenge is to explicitly communicate and represent the DNA of the company to the new generations. Our DNA is to have strong conceptual ideas and to have the courage, skills, and power to detail strong ideas and turn them into built architecture.

Fig. 01 ‘Residential towers Friends at Hirschgarten’: the building connects residential and communal spaces inside. The living space is arranged around a centrally located hub with the bathroom, kitchen, and laundry room.

Allmann Sattler Wappner

Referring to your works in the field of branding, the scale of the exemplary Audi Corporate Architecture is just impressive! More than 750 Audi Terminals have been implemented according to the feasibility studies and design guidelines researched by your company. What are the essential phases of research on such a scale?

The most important thing in the international competition for the global Audi Corporate Architecture for their showrooms and stores was to find a special element, which refers to the brand values of the company and affects the clients in an emotional way, which can be understood worldwide. Our special element is the curve—it is a symbol for the dynamic of the automobile and brings the distinctive shape of the windows in the façade. The sharp cut of the windows makes the metal mesh of the façade even more blurry and focuses your eyes on the cars in the windows. That is an interesting contrast. Decisive for worldwide success is the modular concept of the building, which allows it to react to any urban situation and any demand of the dealer about the size and elements.

In what ways should city centers develop to meet such increasing demands? What are other areas and aspects of cities’ development on which similar efforts should be focused?

In general, in Germany, we are pursuing the goal of densifying our cities, and at the same time also strengthening the rural areas to make it attractive to go back to abandoned villages. I believe the general answer is not to build more new but to use what we already have. It is true that the world population is growing—but we could put this up for debate. We should consider if the earth can withstand the consumption of another billion people in the future.

Fig.03 ‘Annette-Allee’: an office building situated in Münster, Germany. The building consists of a top-floor recess and distinctive cut-outs in its overall form.

Allmann Sattler Wappner

It seems that besides the general development of the ideas of architecture, the technologies and materials dedicated to façades are becoming increasingly important as well. Can you tell us how your company incorporated those opportunities in the Inselparkhalle in Hamburg?

Yes, that is true, we are interested in the development of the façade, and each building of ours has a special theme related to the façade. This is where we explore and research the possibilities of existing, as well as new materials. The Inselparkhalle is an example of a project where we took the theme one step further. We gave each of the four sides of the sports hall and swimming pool each a different concept for the façade. We had already tried this idea out successfully in another sports hall in Tübingen—it works well for both large and simple sports buildings to conceive four different sides. Thereby, you break down the large dimensions.

Fig. 04 ‘Dornier’s Aviation and Aerospace Museum’ links the history of aviation to modern-day air traffic thanks to its location next to Friedrichshafen Airport.

Allmann Sattler Wappner

On the one hand, there is a contextual value of the design: the connections of the building with its surroundings are solved via four different façades. And on the other, it takes full advantage of the spatial possibilities that such solutions provide. That is the whole wall, which “disappears” on demand…

In Hamburg, each façade react to its physical context: We made a wooden façade oriented to the neighboring ‘House of the Woods.’ Many people sit outside here, and the scale is minimized and has a certain warmth and quality that encourages you to stay. At the front side towards the water, the façade is constructed of different layers of metal, allowing the situation of the signage, vertical greenery, and the entrance. Towards the southeast is the polycarbonate heating collector, and finally, the fourth façade towards the meadow is made of steel and glass and is completely openable. It opens in the summer, connecting the indoor swimming pool with the outside and turning it into an open-air bath. That is great for a public bath built on a tight budget.

What are some other technological solutions that seem particularly interesting to you when it comes to innovative spatial and functional ideas?

We become interested in a technical solution when it serves design and the environment. Right now, we are exploring low-tech and natural techniques—again!—such as brick and wood. Saving resources and consumption also means buildings with good design and long livability.

Fig. 05 ‘Construction depot’ consists of two buildings. One includes workshops, communal spaces, and administrative offices, and the other, a vehicle depot, a repair shop, and a vehicle wash facility.

Allmann Sattler Wappner

What decides the success of designs such as high-rise buildings in the new Europacity district in Berlin and ‘Am Münchner Tor’ in Munich? Is it possible to outline the general list of “good practices” for designs that are to function as landmarks and “gateways” to districts or even whole cities?

Both projects are high-rises with high visibility. We are interested in the differentiation in the detail, meaning how a building can offer beauty and make sense not only from a distance but also when walking close by or using it inside. A high-rise office building with a small footprint has a built-in restriction that limits the flexibility and influences the special qualities of the workingspaces and the flow between floors and areas. This has to be overcome in a well-done floor plan. To us, a high rise is also a brick in city plaster—much more than a unique, iconic building.

Picture credits: pp. 199, 200, 203 figs. 01-05: Allmann Sattler Wappner; pp. 199, 200, 203 figs. 01, 02, 04: photo by Brigida Gonzales; p. 200 fig. 03: photo by Günther Wett/FRENER & REIFER Metallbau; p. 203 fig. 05: photo by Florian Holzherr.

This is an excerpt from the Laka Perspectives book vol. 02, published by Laka Foundation (non-profit, Poland) in 2019 with the support of Solarlux GmbH (Germany): www.lakaperspectives.comhttps://www.instagram.com/laka.perspectives/